Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Infect Immun ; 91(4): e0040522, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-36877064

RESUMO

Chlamydia trachomatis is an obligate intracellular bacterial pathogen that causes ocular and urogenital infections in humans. The ability of C. trachomatis to grow intracellularly in a pathogen-containing vacuole (known as an inclusion) depends on chlamydial effector proteins transported into the host cell by a type III secretion system. Among these effectors, several inclusion membrane proteins (Incs) insert in the vacuolar membrane. Here, we show that human cell lines infected by a C. trachomatis strain deficient for Inc CT288/CTL0540 (renamed IncM) displayed less multinucleation than when infected by IncM-producing strains (wild type or complemented). This indicated that IncM is involved in the ability of Chlamydia to inhibit host cell cytokinesis. The capacity of IncM to induce multinucleation in infected cells was shown to be conserved among its chlamydial homologues and appeared to require its two larger regions predicted to be exposed to the host cell cytosol. C. trachomatis-infected cells also displayed IncM-dependent defects in centrosome positioning, Golgi distribution around the inclusion, and morphology and stability of the inclusion. The altered morphology of inclusions containing IncM-deficient C. trachomatis was further affected by depolymerization of host cell microtubules. This was not observed after depolymerization of microfilaments, and inclusions containing wild-type C. trachomatis did not alter their morphology upon depolymerization of microtubules. Overall, these findings suggest that IncM may exert its effector function by acting directly or indirectly on host cell microtubules.


Assuntos
Infecções por Chlamydia , Citocinese , Humanos , Citocinese/fisiologia , Chlamydia trachomatis/fisiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Células HeLa , Vacúolos/metabolismo , Centrossomo/metabolismo , Infecções por Chlamydia/microbiologia , Interações Hospedeiro-Patógeno
2.
Front Cell Infect Microbiol ; 12: 902210, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35903198

RESUMO

Chlamydia trachomatis is an obligate intracellular bacterium causing ocular and urogenital infections in humans that are a significant burden worldwide. The completion of its characteristic infectious cycle relies on the manipulation of several host cell processes by numerous chlamydial type III secretion effector proteins. We previously identified the C. trachomatis CteG effector and showed it localizes at the host cell plasma membrane at late stages of infection. Here, we showed that, from 48 h post-infection, mammalian cells infected by wild-type C. trachomatis contained more infectious chlamydiae in the culture supernatant than cells infected by a CteG-deficient strain. This phenotype was CteG-dependent as it could be complemented in cells infected by the CteG-deficient strain carrying a plasmid encoding CteG. Furthermore, we detected a CteG-dependent defect on host cell cytotoxicity, indicating that CteG mediates chlamydial lytic exit. Previous studies showed that Pgp4, a global regulator of transcription encoded in the C. trachomatis virulence plasmid, also mediates chlamydial lytic exit. However, by using C. trachomatis strains encoding or lacking Pgp4, we showed that production and localization of CteG are not regulated by Pgp4. A C. trachomatis strain lacking both CteG and Pgp4 was as defective in promoting host cell cytotoxicity as mutant strains lacking only CteG or Pgp4. Furthermore, CteG overproduction in a plasmid suppressed the host cell cytotoxic defect of CteG- and Pgp4-deficient chlamydiae. Overall, we revealed the first chlamydial type III secretion effector involved in host cell lytic exit. Our data indicates that CteG and Pgp4 participate in a single cascade of events, but involving multiple layers of regulation, leading to lysis of host cells and release of the infectious chlamydiae.


Assuntos
Infecções por Chlamydia , Chlamydia trachomatis , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Infecções por Chlamydia/microbiologia , Células HeLa , Humanos , Mamíferos/genética , Plasmídeos/genética
3.
Artigo em Inglês | MEDLINE | ID: mdl-30094225

RESUMO

Chlamydia trachomatis is an obligate intracellular human pathogen causing mainly ocular and genital infections of significant clinical and public health impact. C. trachomatis multiplies intracellularly in a membrane bound vacuole, known as inclusion. Both extracellularly and from within the inclusion, C. trachomatis uses a type III secretion system to deliver several effector proteins into the cytoplasm of host cells. A large proportion of these effectors, the inclusion membrane (Inc) proteins, are exposed to the host cell cytosol but possess a characteristic hydrophobic domain mediating their insertion in the inclusion membrane. By yeast two-hybrid, we found that C. trachomatis Inc CT288 interacts with the human centrosomal protein CCDC146 (coiled-coil domain-containing protein 146). The interaction was also detected by co-immunoprecipitation in mammalian cells either ectopically expressing CCDC146 and CT288 or ectopically expressing CCDC146 and infected by a C. trachomatis strain expressing epitope-tagged and inclusion membrane-localized CT288. In uninfected mammalian cells, ectopically expressed full-length CCDC146 (955 amino acid residues) localized at the centrosome; but in cells infected by wild-type C. trachomatis, its centrosomal localization was less evident and CCDC146 accumulated around the inclusion. Recruitment of CCDC146 to the inclusion periphery did not require intact host Golgi, microtubules or microfilaments, but was dependent on chlamydial protein synthesis. Full-length CCDC146 also accumulated at the periphery of the inclusion in cells infected by a C. trachomatis ct288 mutant; however, a C-terminal fragment of CCDC146 (residues 692-955), which interacts with CT288, showed differences in localization at the periphery of the inclusion in cells infected by wild-type or ct288 mutant C. trachomatis. This suggests a model in which chlamydial proteins other than CT288 recruit CCDC146 to the periphery of the inclusion, where the CT288-CCDC146 interaction might contribute to modulate the function of this host protein.


Assuntos
Proteínas de Bactérias/metabolismo , Chlamydia trachomatis/fisiologia , Interações Hospedeiro-Patógeno , Corpos de Inclusão/microbiologia , Proteínas de Membrana/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Vacúolos/microbiologia , Animais , Chlorocebus aethiops , Células HEK293 , Células HeLa , Humanos , Imunoprecipitação , Corpos de Inclusão/química , Ligação Proteica , Técnicas do Sistema de Duplo-Híbrido , Vacúolos/química , Células Vero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...